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A general methodology is outlined for a complete seismic soil-pile-foundation—
structure interaction analysis. A Beam-on-Dynamic-Winkler-Foundation
(BDWF) simplified model and a Green’s-function-based rigorous method are
utilized in determining the dynamic response of single piles and pile groups. The
simplified model is validated through comparisons with the rigorous method. A
comprehensive parameter study is then performed on the effect of pile group
configuration on the dynamic impedances of pile foundations. Insight is gained
into the nature of dynamic pile—soil—pile interaction. The results presented herein
may be used in practice as a guide in obtaining the dynamic stiffness and damping

of foundations with a large number of piles.

INTRODUCTION AND GENERAL
METHODOLOGY

Seismic soil-pile-foundation—structureinteraction analy-
sis can be conveniently performed in three consecutive
steps, as illustrated schematically in Figs 1-3:

(1) Obtain the motion of the foundation in the
absence of superstructure inertia. This so-called
Sfoundation input motion includes translational as
well as rotational components.

(2) Determine the dynamic impedances (springs and
dashpots) associated with swaying (K, or K,),
rocking (K;, and K;,) and cross-swaying-rocking
(K, or K,_.,) oscillations of the pile top.

(3) Compute the seismic response of the super-
structure, supported on the springs and dashpots
of step 2 and subjected at its base to the
foundation input motion of step 1.

For each step of the analysis several alternative
formulations have been developed and published in
the literature, including finite-element formulations,
boundary-element, semi-analytical and analytical sol-
utions, and a variety of simplified methods. Table 1 lists
some of the available methods. Three specific multi-step
methods for computing soil-pile-foundation—structure
interaction analysis have been proposed! which make
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use of rigorous as well as simplified methods. This paper
uses the methods shown bold-faced in Table 1.

The objective of this study is to investigate the effect
of group configuration on dynamic impedances of pile
foundations. The results presented may be utilized to
obtain realistic estimates of dynamic impedances of
large pile groups embedded in homogeneous as well as
in inhomogeneous soil profiles. This paper should be
seen as a continuation of two previous publications by
the authors and co-workers.>?

SIMPLIFIED METHOD OF SOLUTION USED IN
THIS PAPER

A Beam-on-Dynamic-Winkler-Foundation (BDWF)
model developed by Gazetas and his co-workers has
been used to determine the dynamic response of single
piles and pile groups.3'7 The soil is modeled as a
Winkler-foundation resisting the (vertical or lateral)
pile motion by continuously distributed frequency-
dependent linear springs (k) and dashpots (c) along the
pile length. k& +iwc constitutes the vertical or lateral
local impedance of the Winkler foundation.

Frequency-dependent values are assigned to these
uniformly distributed spring and dashpot coeflicients
using the following algebraic expressions, developed by
matching the dynamic pile-head displacements from
Winkler and finite-element analyses.

k. ~ 0-6E,(1 + /a5 ) (1)
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seismic waves

Fig. 1. Seismic soil—pile-foundation—structure interaction: the
whole system.
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in which E is the Young’s modulus, p; is the mass
density, j; is the hysteretic damping and V is the shear
wave velocity of the soil. Note that the unit of &, is
stiffness per unit length of the pile ([F][L]_Z) and the
traditional subgrade modulus is in units of [F][L]™>.
Similar &, and c, values can be obtained by Novak’s
plane strain elastodynamic solution for a rod oscillating
in a continuum.?~'® Novak’s results would be exact for
an infinitely long-and-rigid rod fully embedded in a

ok

free-field

Fig. 2. Seismic soil-pile—foundation-structure interaction:
kinematic seismic response analysis.
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Fig. 3. Seismic soil-pile-foundation—structure interaction:
inertial response analyses.

continuum space. By contrast, the expressions given
above for radiation damping are derived in two steps:

(1) their form is first determined from a simple one-
dimensional ‘cone’ model''™"* which resembles
Novak’s model, but which, in contrast, does allow
for some non-zero vertical deformation of the soil
during lateral motion, as is appropriate due to
the presence of the stress-free surface and to the
non-uniformity with depth of pile deflections;

(2) the numerical coefficients of the expressions are
then calibrated by essentially curve-fitting rigorous
finite-element results, for a variety of pile—soil
geometries and properties, as well as for different
loading conditions.

The spring constants, on the other hand, are derived
solely through curve-fitting, i.e. by matching pile-head
stiffness of the Winkler and the finite-element formu-
lations. One of the approximations introduced in
deriving these equations is to neglect the (relatively
small) influence of pile slenderness and flexibility
(measured through L/d and E;/E).

The resulting values of k, and ¢, from these equations
at various frequencies are generally comparable with
those of Novak. The expressions are preferred for three
reasons. First, they are quite simple (since they do not
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Table 1. General methodology for seismic soil-pile-foundation—
structure interaction

1 DETERMINATION OF KINEMATIC
SEISMIC RESPONSE
(a) Free-field (site) response
One-dimensional elastic or inelastic wave propagation
theories
Two- and three-dimensional elastic wave propagation
theories
(b) Single pile response
Beam-on-Dynamic-Winkler-Foundation (BDWF)
model
Extended-Tajimi formulation
Finite-element formulations
Semi-analytical and boundary-element-type
formulations
(c) Pile group response
Simplified wave-transmission model
Extended-Tajimi formulation
Semi-analytical and boundary-element-type
formulations

2 DETERMINATION OF PILE-HEAD IMPEDANCES
(a) Single pile
Simple expressions
Extended-Tajimi formulation
BDWF model
Novak’s plane-strain formulation
Novak-Nogami’s axisymmetry formulation
Finite-element formulations
Semi-analytical and boundary-element-type
formulations
(b) Pile group
Superposition method (using dynamic interaction
factors)
Extended-Tajimi formulation
Finite-element formulation
Other simplified solutions
Semi-analytical and boundary-element-type
formulations

3. DETERMINATION OF SUPERSTRUCTURE SEISMIC
RESPONSE
Must account for SSI through frequency-dependent
foundation ‘springs’ and ‘dashpots’ from step 2 and
must use the seismic response from step 1 as foundation
excitation.

involve the rather complicated expressions with Bessel
functions of complex argument of the Novak plane-
strain solution). Second, they avoid the substantial
underestimation of stiffness and overestimation of
damping values by the plane-strain model at fre-
quencies wd/V; <1, i.e. in the range of practical
interest (Novak compensates for the underestimation
in stiffness and overestimation in damping through
empirical adjustments, which assume constant &, and ¢,
below two different cut-off frequencies). Third, the
lateral radiation damping expression does not exhibit
the spurious high sensitivity to Poisson’s ratio observed
in the plane-strain Novak’s solution, and which stems
mainly from the restriction of vertical soil deformation.

It is also worth noting that dynamic Winkler springs
and dashpots have been derived by Liou & Penzien,
Roesset & Angelides and Kagawa & Kraft using yet

another methodology."*™'® They all utilized three-
dimensional formulations (based either on Mindlin’s
static solution or on finite-element modeling) to relate
local unit soil reaction to local pile deflection at various
depths along the pile; a single complex-valued dynamic
stiffness, S, or S,, to be uniformly distributed as springs
and dashpots along the pile (as is appropriate for a
Winkler foundation), was then derived by a suitable
integration of local stiffnesses over depth. Only a limited
number of results, pertaining to a uniform soil stratum,
have been presented in those studies.

All the foregoing alternative methods give k and ¢
values that are in reasonable accord for the range of
frequencies of interest. Individual differences in the
Winkler parameters usually do not exceed 10—-20%.

The k, and ¢, values obtained from eqns (3) and (4)
apply in real-life situations for frequencies w above the
stratum cut-off frequency. The latter is nearly identical
with the natural frequency, w, = 7V, /2H, in horizontal
(shear) vibrations of the soil stratum. For w < wj
radiation damping is vanishingly small, as a function
of the material damping. One may then state:

ky
Cx = (Cx)hysteresis ~ 208 — (5)

w
Similarly, the %k, and ¢, expressions apply only
for frequencies above the stratum cut-off frequency
in vertical compression—extension vibration; this is
approximately given by w, = 3-dwy/n(1 — v).

@) Kaynia & Kause!
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Fig. 4. Kinematic seismic response of fixed-head single pile:

@) Vo/Vo =1, 1/2 and (b) V,/V, = 1/3, 1/6 (E,/Ey, = 1000,
hy = 5d, L/d = 20, v, = 0-4, 3, = 0-05).
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For w < w,

k.
¢, = (Cz)hysteresis =28 L—u- (6)

VALIDATION OF THE SIMPLIFIED METHOD

In order to verify the simplified method of solution
utilized in this paper, the following selected compari-
sons, with results from rigorous solutions as well as
from other simplified methods, are presented.

Figure 4 shows the kinematic displacement factor I,
of a single pile embedded in a two-layered stratum as a
function of ay = wd/V;, for a number of V,/V,, ratios,
obtained by the simplified method. ¥V, and V), are the
shear wave velocities of the upper and lower layers
respectively. The thickness of the upper layer is one-
quarter of the pile length. The same quantity evaluated
by the boundary integral type of formulation'” is also
shown in the figure, which shows that the results from
the simplified method agree extremely well with those of
Kaynia & Kausel'” for both homogeneous and two-
layered deposits. An exception to the general shape of 1,
versus aq; is observed in Fig. 4(b). It refers to a soil
deposit containing a thin, soft top layer (h,/d < 5 and
Va/Vy < 1.3). As V,/Vy decreases, i.e. as the top layer
becomes relatively softer, the kinematic displacement
factor tends to fluctuate with frequency at an increasing
rate. At certain frequencies, the pile-head deflection may
even be greater than the free-field surface displacement.
The reason is that the pile cannot follow the ground
motion within this upper layer when the velocity

contrast between the two layers is large (e.g.
V,/ Vo = 1/6).

The simplified method also gives encouraging results
for the kinematic seismic response of pile groups. Figure
5 compares the kinematic displacement factor I, of a
1 x 2 fixed-head pile group from the simplified and the
rigorous methods. Notice that the differences are
significant only for very stiff piles relative to the soil
(E,/Es = 10000).

The dynamic impedances of a fixed-head single pile
obtained from the BDWF model are displayed in Figs
6-8 and compared with the rigorous results (the
impedances are normalized with the Young’s modulus
of the deposit). Evidently, the comparison between the
corresponding swaying and cross-coupling impedances
is very satisfactory. A minor discrepancy is observed
between the rocking stiffnesses, but the damping terms
match fairly well. Figure 9 compares the stiffness and
damping computed by the two methods for a 2 x 2 pile
group. Two pile spacing ratios (s/d =5 and 10) are
considered. The group stiffnesses and damping factors
are in a good agreement.

The seismic response analysis of the complete soil—
pile—foundation-structure system using the simplified
method has been compared with the extended-Tajimi
theory (see Ref. 18) and the results have been presented.“‘f3
The two methods agree very well, although the extended-
Tajimi method slightly overestimates the dynamic
stiffness compared with the simplified method.

Therefore, it can be concluded that the simplified
method of solution is satisfactory for both kinematic
and inertial seismic response analyses.

Simplified Method

* X X  Kaynia & Kausel

0.40

0.20

0.00 T T T
0.0 0.1

Fig. 5. Kinematic seismic response of a fixed-head 1 x 2 pile group.
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Fig. 6. Horizontal impedance of a single pile: comparison with the rigorous solution (E,/E; = 1000, p,/p; = 1-4, v, = 0-4, §; = 0-05,
L/d = 20).

EFFECT OF GROUP CONFIGURATION ON
DYNAMIC IMPEDANCES OF PILE
FOUNDATIONS IN SOFT SOIL

The major goal of this section is to investigate the
influence of pile group configuration on dynamic
impedances. Special attention is paid to the effects of
frequency, spacing, the nature of the soil profile, and the
number of piles in the group. In current engineering
practice dynamic impedances of pile groups are usually
estimated by using the impedances of a single pile and
accounting for the group effect by means of static
interaction factors. The other objective of this section is
to study the applicability of dynamic interaction
factors through comparison with rigorous numerical
solution.

Figure 10 shows pile group configurations and soil
profiles to be studied. All piles, of diameter 4 and
length L, are considered to be linear elastic beams with

constant Young’s modulus, E,, and mass density,
pp- Two typical soil deposits are investigated whose
Young’s modulus: (a) is constant (E,) and (b) is
proportional to depth (E,(z) = E,(L)z/L}. In both
cases the soil is assumed to be a linear hysteretic
continuum with constant Poisson’s ratio v, constant
material density p,, and constant hysteretic damping
B;.

Three categories of groups of floating piles are
studied:

(1) a rigidly-capped 1 x n linear pile group consisting
of 1,2, 3, 4, 6 or 9 piles in one row;

(2) a rigidly-capped 2 x n rectangular group of
2x2,2x3,2x%x4,2x5, or 2x6 piles in two
rows;

(3) a rigidly-capped n x n square group of 2 x 2,
3x 3,4 x4, or 6 x 6 piles.

The pile group is subjected to harmonic excitation at
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Fig. 7. Rocking impedance of a single pile: comparison with the rigorous solution (£,/E; = 1000, p,/ps = 14, v, = 0-4, 3, = 0-05,
L/d = 20).

the top. The applied dynamic forces are transmitted
onto each pile through a rigid cap. Vertical, horizontal,
and rocking oscillations are considered. For each
particular harmonic excitation of frequency w, the
complex-valued dynamic impedance « of the group is
defined as the ratio of total excitation (force F, or
moment M) over the corresponding motion of rigid cap
(displacement u, or rotation ). In general, there are
eight different impedances. Six of them correspond to
the six possible modes of vibration of the pile head:
vertical, «,; horizontal, k, and x,; torsional, x; and
rocking, s, and k,,. Moreover, since horizontal forces
along principal axes induce rotational in additional to
translational oscillations, two more cross-coupling
horizontal-rocking impedances exist: &, and fy;.
Therefore, the 6 x 6 impedance matrix relating the
force—movement vector {Fx,Fy,Fz,Mx,My,Mz}T with
the displacement-rotation vector {uy,u,,u;,0,,0,,0;}

takes the form:

Ky gy O 0 0 0

Kery Ky 0 0 0 0

10 0 Kk ke OO
k=19 Kpry R O 0 ™

0 0 0 0 k O

0 0 0 0 0 &

Presentation of parametric results

The impedances obtained by using the previous
formulation are complex quantities and can be written
as

n:K+iaOC_' (8)

where K is the dynamic group stiffness, C is the group
damping coefficient, which encompasses geometric and
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Fig. 8. Cross-coupling impedance of a single pile: comparison with the rigorous solution (E,/E; = 1000, py/p; = 14, v, = 0-4,
Bs = 005, L/d = 20).

hysteretic dissipation of energy, gy = wd/V; is dimen-
sionless frequency and V' is a characteristic value of the
soil S-wave velocity profile (in this paper V; is taken as
equal to ¥, for the homogeneous and to V(L) for the
nonhomogeneous profile).

Only vertical, horizontal and rotational impedances
are given. Torsional and cross-coupling horizontal-
rocking impedances will not be included here for lack
of space. For vertical or horizontal oscillation, the
dynamic impedance of the group is normalized with
respect to the vertical or horizontal static stiffness of a
single pile in the group (K{" or K{V) multiplied by the
number of piles, whereas for the rocking impedance
both vertical and rocking static stiffness (K,E’) and
Kr(,i)) of a single pile are used for normalization.
Therefore, the ‘dynamic stiffness %roup factor’ k™ and
the ‘damping group factor D™ are introduced as
follows:

For vertical oscillation,

’ A (n)
() — £ qy and D = G 1
nk; ) n z( )
For horizontal oscillation,
i (n) 7
K g pp o C
nK§ ) nK,E )
km o
P =2 and DY =
nky nkKy
For rocking oscillation,
( (1)
t;) d and Dg) =

nkly + 3y kY

©)

(10)

~ ()

Ix

nky + 302K
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Fig. 9. Dynamic stiffness and damping group factors (E,/E; = 1000, p,/p, = 1-4).

c
nKr(yl) +3 x2 kW
(11)

The stiffness and damping group factors are plotted
according to the pile spacing ratio and configurations as
follows: Figs 11-25 present results for linear groups of
piles in a row, Figs 26-33 are for rectangular pile
groups, and Figs 3439 are for square pile groups.

Tables 2—5 present impedance functions of single pile
and pile groups resulting from different methods,
normalized by the Young’s modulus E; of the soil.

I <
nKr(yl) +3 kM

k) and DY) =

Analysis and discussion of results

The results presented here in figures and tables reveal
the following significant trends.
An interesting common feature is that the group

behavior (due to pile-to-pile interaction) is more
pronounced as the number of piles increases. If there
had been no interaction, the curves would have
coincided with those of a single pile (broken lines) in
which the stiffness deviates only slightly from unity in
the frequency range considered. The radical change of
group stiffness and damping takes place as the number
of piles increases from one to two (Figs 16-25). In a
linear group, increasing the number of piles beyond two
or three has only a small effect on the dynamic stiffness
and damping group factors, and the variation of the
group stiffness and damping with frequency is fairly
smooth. It is straightforward to explain this lack of
strong interaction between piles in a linear group. Each
new pile ‘introduced’ in an existing linear group would
generate waves which would only affect the two or three
nearest piles; when these waves are 180° out of phase
with one of these piles, they are in phase with the next
pile(s). As a result, the combined effect of wave
interferences on impedances is quite small.
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1xn 2xn nxn

Fig. 10. Pile configurations and soil profiles studied.

By contrast, the interaction effect becomes increas-
ingly pronounced as the number of rows in a pile group
increases. Obviously, this is due to the pile-to-pile
interaction between piles in opposite rows. Thus, peaks
and valleys appear on the group stiffness and damping
curves, which depend on the size of the group and the
spacing of the piles. Figures 26-29 clearly show this
transition of dynamic stiffness and damping group
factors: smooth curves for the linear groups, fluctuating
curves for rectangular and square pile groups. As a
consequence, at certain frequencies the dynamic group
efficiency may be much greater than unity. The only
exception here is the rocking impedance &, of 2 x n pile
groups. The explanation will be given in the subsequent
paragraph.

For horizontal and rocking modes of oscillation in
linear and rectangular pile groups, the group stiffness
and damping in the x and y directions are, of course,
different. As explained above, it is the interaction
between piles in different rows that plays a dominant
role in the dynamic response of pile groups. Therefore,
the behavior of the group impedances Kk, and K, is
controlled by compression—extension waves emitted
from the piles in one row or two rows, while the
impedances s, and Ky, are dominated by shear wave
interferences. The rate of fluctuation of the group
stiffness and damping is thus faster for £, and kK,

2.0 . + e * * E
E s s/d=3 3

1_5_§ o s/d=5 _
t o s/d=10

k™
(=]
i

0.54—84

6 -
cl
o
4
2 -
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0.0 0.1 0.2 0.3 0.4 0.5
wd
a4 = ——
o
V.(D)

Fig. 11. Normalized vertical dynamic stiffness and damping

group factors of 1x4 rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

ps/pp =07, B, = 0:05 and v, = 0-4): effects of frequency and
pile separation distance.

than for k, and Kry. This is because compression—
extension waves propagate at an apparent phase
velocity V=V, (‘Lysmer’s analog’ velocity), where
Via=[34/m(1 — v,)]V, 2 1-8V; (for v, = 0-4), leading
to a faster fluctuation rate for K, and k.

For rocking around the x-axis of the linear and
rectangular pile groups (Figs 19, 24 and 32), the
variation of the group stiffness and damping with
frequency is very smooth. This is due to very small
interaction taking place as a result of rotational
deformation at the head of each pile in a row and
because piles located on the opposite side of the x-axis
oscillate axially 180° out of phase. However, the case of
square pile groups is more complicated, and high peaks
and valleys do appear on the curves.

In engineering practice, three approaches are used to
obtain the dynamic impedances of pile groups: (a) the
superposition method with use of static interaction
factors, ignoring the frequency dependence of pile—pile
interaction; (b) superposition with use of (simplified or
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Fig. 12. Normalized horizontal dynamic stiffness and damping
group factors of 1 x4 rigidly-capped pile groups in a
nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,
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Fig. 14. Normalized rotational dynamic stiffness and damping
group factors of 1 x4 rigidly-capped pile groups in a
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Fig. 13. Normalized horizontal dynamic stiffness and damping

group factors of 1 x4 rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

ps/pp =07, B, = 0-05 and v, = 0-4): effects of frequency and
pile separation distance.
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Fig. 15. Normalized rotational dynamic stiffness and damping

group factors of 1 x4 rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E(L) = 5000, L/d =20,

ps/pp = 07, B = 005 and v, = 0-4): effects of frequency and
pile separation distance.
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Fig. 19. Normalized rotational dynamic stiffness and damping
group factors of 1xn rigidlycapped pile groups in a
homogeneous half-space (E
ps/pp =01, B, =005 and

/Es=10000, L/d =20, s/d =5,
v; = 0-4). effect of pile group
configurations.
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Fig. 20. Normalized rotational dynamic stiffness and damping
group factors of 1 xn rigidly-capped pile groups in a
homogeneous half-space (E,/E; = 10000, L/d = 20, s/d = 5,
ps/pp =07, B, =005 and v, =0-4): effect of pile group

configurations.
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Fig. 22. Normalized horizontal dynamic stiffness and damping

group factors of 1 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

s/d=5, py/p, =07, 3; =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 21. Normalized vertical dynamic stiffness and damping

group factors of 1 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E,(L) = 5000, L/d =20,

sfd=35, ps/pp, =07, B, =0-05 and v, = 0-4): effect of pile
group configurations.
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Fig. 23. Normalized horizontal dynamic stiffness and damping

group factors of 1 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E;/E (L) = 5000, L/d=20,

s/d=35, ps/pp, =07, B, =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 24. Normalized rotational dynamic stiffness and damping

group factors of 1 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

s/d=35, ps/p, =07, B, =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 26. Normalized vertical dynamic stiffness and damping

group factors of 2 x 2 rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d = 20,

s/d=35, py/p, =07, B, =005 and v, =0-4): effects of
frequency and pile separation distance.
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Fig. 25. Normalized rotational dynamic stiffness and damping

group factors of 1 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E(L) = 5000, L/d =20,

sfd=35, ps/py =07, By =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 27. Normalized horizontal dynamic stiffness and damping

group factors of 2x 2 rigidly-capped pile groups in a

nonhomogeneous half-space (E,/Es(L) = 5000, L/d =20,

s/d=5, ps/p, =07, B, =005 and v, =04): effects of
frequency and pile separation distance.
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Fig. 28. Normalized rotational dynamic stiffness and damping

group factors of 2 x 2 rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

sfd=5, pi/p, =07, B,=005 and v, =04): effects of
frequency and pile separation distance.
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Fig. 30. Normalized horizontal dynamic stiffness and damping

group factors of 2 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d= 20,

s/d=5. p/p, =07, B, =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 29. Normalized vertical dynamic stiffness and damping

group factors of 2 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E,(L) = 5000, L/d =20,

s/d=35, ps/py =07, B, =005 and v = 0-4): effect of pile
group configurations.
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Fig. 31. Normalized horizontal dynamic stiffness and damping

group factors of 2 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E,(L) = 5000, L/d =20,

s/d=35, ps/p, =07, B, =005 and v, =04 effect of pile
group configurations.
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Fig. 32. Normalized rotational dynamic stiffness and damping

group factors of 2 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

s/d=3, p/pp =07, B, =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 34. Normalized vertical dynamic stiffness and damping

group factors of nx n rigidly-capped pile groups in a

homogeneous half-space (E,/E, = 1000, L/d =15, s/d=5,

ps/pp =07, B, =005 and v, = 0-4): effect of pile group
configurations.
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Fig. 33. Normalized rotational dynamic stiffness and damping

group factors of 2 xn rigidly-capped pile groups in a

nonhomogeneous half-space (E,/E (L) = 5000, L/d =20,

s/d=35, ps/pp =07, By =005 and v, = 0-4): effect of pile
group configurations.
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Fig. 35. Normalized horizontal dynamic stiffness and damping

group factors of nxn rigidly-capped pile groups in a

homogeneous half-space (E,/E, = 1000, L/d =15, s/d =5,

ps/pp =07, B, =005 and s =0-4): effect of pile group
configurations.
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Fig. 38. Normalized horizontal dynamic stiffness and damping Fig. 39. Normalized rotational dynamic stiffness and damping
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Table 2. Impedance functions of single piles: simplified” vs rigorous® (E,/E, = 1000, L/d = 15)

255

k=K+iwC

ﬁ Kx2 Cxl gﬁ Kzl &g Czl CzZ erl erZ Crxl Crx2
%  GE,  4E dE, dE,  dE, dE, dE, dE, &F, FE &E, &K,

x5 x5 x0-5 x0-5 x50 x50 x0-5 x0-5 x50 x50 x0-5 x0-5
0-0 0-850 — — 0-176 — — 0-548 — —
01 0-848 0-253 0-227 0-178 0-815 1-15 0-552 0-65 0-661
0-2 0-848 0-200 0-225 0-195 0-710 0-96 0-559 0-508 0-523
03 0-854 0-183 0-208 0-209 0-655 0-81 0-569 0-460 0-462
0-4 0-866 0-174 0-197 0-214 0-618 0-75 0-580 0-436 0-418
05 0-853 0-875 0-169 0-187 0-231 0-215 0-591 0-68 0-534 0-590 0:422 0-380
0-6 0-881 0-166 0-180 0-214 0-570 0-65 0-599 0:412 0-350
0-7 0-882 0-163 0-175 0-210 0-553 0-62 0-606 0-405 0-329
08 0-880 0-161 0-170 0-204 0-538 0-61 0-612 0-400 0-313
09 0-875 0-160 0-166 0-196 0-525 0-60 0-618 0-396 0-300
1-0 0-865 0-158 0-163 0-185 0-515 0:59 0-624 0-393 0-290

% See Refs 19 and 25.

rigorous) dynamic interaction factors; and (c) direct
numerical solutions.

In principle the last method is more rigorous, but a
sophisticated computer code is usually needed. The first
and second methods are conceptually simple. They use
the dynamic impedances of single piles as the basis and
account for the group effect by means of interaction
factors (static or dynamic). Closed-form expressions for
the impedances of single piles in three idealized soil
deposits, for all modes of vibration, have been
developed by Gazetas."

Table 2 compares the dynamic impedances of single
piles computed with these simple expressions with those
computed with the rigorous solution of Kaynia &
Kausel.!” The stiffness coefficient in the simplified
method is taken to be independent of frequency. This
was confirmed as a good approximation. Overall the
comparison is quite good. The ‘rigorous’ stiffness is
practically independent of frequency and the damping
does not rely on frequency at intermediate and high a;.

The use of static interaction factors is still popular in
current practice. The group stiffness and damping are
estimated from the static interaction factor (in displace-
ment or rotation) from Poulos.?*?? This approach
cannot predict properly the dynamic response of pile
groups, except perhaps at very low frequencies of
oscillation. The dynamic interaction factors are
complex, quite different from static ones, and both real
and imaginary parts can be negative at certain
frequencies, which means that at such frequencies the
displacements of pile groups may be less than those of
single piles subject to the same average pile loading.
Therefore the dynamic group ‘efficiency’ may far exceed
unity, whereas the static ‘efficiency’ is well below unity,
especially with a large number of piles.

Therefore, the dynamic-interaction-factor approach is
the only one that can be recommended in engineering
practice. The dynamic interaction factors are available
in dimensionless charts for two typical soil profiles (see
Ref. 3). Also, they are available in simple analytical

Table 3. Vertical impedance functions® of 2 x 2 piles (E,/E; = 1000, L/d = 15, 3; = 0.05, v, = 0.4)

k=K+iwC

ag s/d=2 s/d=5 s/d=10

_Iz_zl_ 1222 & Cz 1 CzZ Cz3 Kz 1 KZZ Kz:i Cz 1 CzZ Cz3 kzl K_ZZ Kz3 Cz 1 CzZ CzS

dE,  dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE,

x50 x50 x50 x5 x5 x5 x50 x50 x50 x5 x5 x5 x50 x50 x50 x5 x5 x5
00 0-267 0-270 — — — 0-348 0350 — — — 0-440 0436 — — —
01 0-250 0256 0-250 0-251 0-310 0-312 0-401 0-413 0-395 0-393 0-650 0661
0-2 0-252 0-253 0-221 0-226 0-268 0-261 0412 0423 0-563 0-607 0-808 0-895
03 0-231 0-231 0204 0-206 0-160 0-165 0432 0449 1:619 1-590 0-486 0-290
04 0-175 0-176 0191 0194 0-016 0-016 0-559 0-560 1-101 1-030 0:-160 0154
0-5 0330 0-093 0094 0-101 0-190 0-189 0444 0462 0-461 0-136 0900 0-899 0-553 0-803 0-794 0-169 0-178 0-183
06 —-0-015 -0-014 0-185 0-188 2:946 2-940 0-454 0462 0-670 0-661 0208 0214
0-7 —0-200 -0-154 0-186 0-191 2:014 2:010 0-147 0-152 0-587 0580 0-238 0-241
0-8 —-0-460 -0-336 0-183 0-185 1-490 1-450 0-135 0-130 0-545 0-540 0-275 0-270
09 —-0:720 -0-570 0-186 0-186 1-126 1-120 0-144 0-137 0-661 0-667 0-342 0-308
1-0 —1-200 -0-877 0-186 0-190 0-881 0-885 0-144 0-148 1-180 1-120 0-294 0-291

“ Subscripts: 1, using static interaction factors; 2, using dynamic interaction factors; 3, using rigorous method.
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Table 4. Vertical impedance functions” of 3 x 3 piles (E,/E, = 1000, L/d = 15, 3, = 0-05, v, = 0-4)

k=K+iwC

g s/d=2 s/d=15 s/d =10

K:l 722 Kz} C_I C:Z C:3 Kzl Kzl k:3 & C:Z Eﬁ kzl kzZ K:} C:l CzZ C:?

dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE. dE, dE, dE, dE, dE, dE,

x50 x50 x50 x5 x5 x5 x50 x50 x50 x5 x5 x5 x50 x50 x50 x5 x5 x5
0-0 0-348 0347 — — — 0495 0506 — — — 0-634 0-705 - -
0-1 0312 0305 0-388 0-401 0-371 0367 0-815 0-825 0-490 0485 1785 1775
02 0-251  0-247 0-380 0-375 0-055  0-060 0-883 0-903 1-584 229 2:469 2778
03 0132 0-135 0-348 0-354 —0-501 -0-494 1-133  1-131 3-643 3120 0-729 0-588
0-4 —0-048 —0-052 0-339 0-344 —-1-209 -1-210 1-808 1810 2:695 2:770 0-585 0-382
0-S 0425 -0-320 -0-309 0-114 0344 0344 0642 4830 4780 0-172 2987 2-892 0-892 1-820 1-780 0-240 0-299 0-293
0-6 —0-642 —0-635 0-341 0-345 7-603 6:270 0-650 0646 1-114 1-140 0-440 0-439
07 —1-223 -1-040 0-344 0-349 4-251 4-370 0-381 0-386 1-002 1-140 0-631 0625
0-8 —1-865 —1-560 0-342 0355 3-546 3730 0-364 0-359 1-535 1-470 0-592 0-585
09 -2:693 -2210 0292 0-361 3210 3340 0-258 0-254 0930 0925 0-658 0-666
1-0 -4-118 —-3-040 0201 0-367 2-:243  2-300 0225 0-216 2:780 2-870 0-837 0779

? Subscripts: 1, using static interaction factors; 2, using dynamic interaction factors; 3, using rigorous method.

forms for homogeneous and nonhomogeneous soils. For
example, for a homogeneous soil profile:
1 (S)-l/ 2ex
) Y

7 22 e

For horizontal oscillation,

For vertical oscillation,
—1ws

Vs

G, =

(12)

1 /sy-172 -ﬂsws> (—iws)
a,(0°) = — | = ex ex 13
0 = 55 (3) Pexn (S exn(32) 13
ay(90°) ~ 3a, (14)
a,(0°) & 0,(0°) cos® O + ;,(90°) sin® 6 (15)

The group stiffness and damping are evaluated in a
similar way to the static case. The impedances of 2 x 2
and 3 x 3 pile groups predicted from static and dynamic
interaction factors are compared with the rigorous
numerical solutions in Tables 3, 4 and 5.

In Tables 3 and 4 the vertical group stiffness and
damping coefficients from the dynamic-interaction-
factor method compare very well with the rigorous
numerical solution. Even some detailed trends are
successfully predicted. The difference between these
two methods is generally within 10%. The reason why
such a greatly simplified solution can provide practically
accurate results to the complicated boundary-value
problem is that the key physical feature of cylindrical
shear wave interference is adequately captured. Table 5
presents the results of horizontal impedances for 2 x 2
pile groups. The predictions by the dynamic-interaction-
factor approach is not fully satisfactory, particularly
near the peaks. This is probably due to the assumption
of simultaneous emission of waves from different depths
along each of the piles, which is a crucial assumption
in the model of Dobry & Gazetas” and Makris &
Gazetas.” The flexural waves may propagate down the

Table 5. Horizontal impedance functions” of 2 x 2 piles (E,/E; = 1000, L/d = 15, 3, = 0.05, v, = 0.4)

k=K+iwC

ag sjd=2 s/d=5 s/d=10

le K.\'Z Kx3 Cxl Cxl Cx3 Kx | ka Kx} Cx l CxZ Cx} K,\ 1 KxZ Kx] g&l_ C.\‘Z Cx}

dE, dE, dE, dE, dE, dE. dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE, dE,

x50 x50 x50  x0:5 x05 x05 x50 x50 x50 x05 x05 x05 x50 x50 x50 x05 x05 x05
0-0 0-143 0155 — — — 0-170 0-202 — - 0-238 0-246 —
0-1 0136 0-152 0634 0767 0-168 0198 0-121 0-i24 0221 0-252 0-182 0176
02 0133 0-146 0-601 0676 0-161 0190 0-104 0116 0-238 0-288 0-187 0-165
0-3 0119 0-146 0-600 0:660 0-160 0-184 0113 0120 0-395 0-390 0-165 0-140
0-4 0-109 0134 0-600 0-652 0-142 0-196 0-120 0128 0459 0-439 0-102 0-183
0:5 0157 0085 0125 0-327 0590 0-641 0-220 0-147 0235 0458 0-143 0-136 0270 0425 0-391 0-560 0-064 0-062
06 0-068 0113 0-580 0-631 0-255 0-334 0-167 0-143 0-408 0-348 0-063 0-063
0-7 0-051 0-097 059 0629 0-391 0-518 0-146 0124 0-374 0-335 0-062 0-067
0-8 0027  0:076 0600 0-629 0-593  0-592 0-123  0-082 0-357 0-327 0-065 0070
09 ~0-041 —0-051 0610 0634 0-541 0-523 0-097 0-058 0-348 0-338 0-071 0073
10 -0-088 0020 0-614 0-641 0-510 0442 0-074 0-052 0-384 0-385 0-068 0-073

*Subscripts: 1, using static interaction factors; 2, using dynamic interaction factors; 3, using rigorous method.
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laterally loaded pile at a finite apparent phase velocity,
rendering the assumption of simultaneous arrival of
these waves not strictly valid. Consequently, the waves
that are arriving, even in homogeneous soil, have
different phases along this pile, which is not accounted
for in the simple model.

The group impedances predicted by using static
interaction factors are close to those from the numerical
solutions only at very low frequencies. At intermediate
and high frequencies use of static interaction factors
leads to erroneous results. In fact, it appears that it is
better to ignore pile-to-pile interaction altogether than
to use static interaction factors — a conclusion echoed
by Novak.?

CONCLUSION

A systematic parametric study has been presented on the
effect of pile group configuration upon dynamic
impedances of piles embedded in homogeneous as well
as in inhomogeneous soils. It has been shown that the
cross-interaction between piles in different rows controls
the dynamic response of a ‘rectangular’ pile group;
increasing the number of piles in a line group has very
little effect on the dynamic stiffness and damping
factors.

The comparative study of two simple methods and the
rigorous numerical solution has been conducted for
2 x 2 and 3 x 3 pile groups. It has been demonstrated
that the predictions by the static-interaction-factor
method are acceptable only for static and low-
frequency cases; they may be very conservative or very
unsafe at higher frequencies. The dynamic-
interaction-factor approach successfully predicts the
dynamic response of pile groups in most cases.
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